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ABSTRACT. The paper presents an analysis of the magnetohydrodynamic stability of the axisymmetric
system consisting of a free boundary tokamak plasma with non-circular cross-section, finite resistivity passive
conductors, and an active feedback system with magnetic flux pickup loops, a proportional amplifier with
gain G and current carrying poloidal field coils. A numerical simulation of the system when G is set to zero
identifies flux loop locations which correctly sense the plasma motion. However, when certain of these
locations are incorporated into an active feedback scheme, the plasma fails to be stabilized, no matter what
value of the gain is chosen. Analysis on the basis of an extended energy principle indicates that this failure is

due to the deformability of the plasma cross-section.

1. INTRODUCTION

It is well known that tokamak plasmas with
elongated cross-sections are subject to a pernicious
axisymmetric magnetohydrodynamic (MHD) instability
and must be stabilized by the placement of nearby
passive conductors, and by an active feedback system
which responds on the resistive time-scale of these con-
ductors [1-8}. Most previous analyses of the stability
of such a feedback system have considered the case
of a deformable plasma stabilized by perfectly
conducting passive conductors only [1, 3}, or the case
of a rigid filamentary plasma with resistive conductors
and an active feedback system [{2]. Here we discuss
important new effects present in the more realistic
configuration consisting of a finite-size deformable
plasma, resistive conductors and an active feedback
system. We also discuss the importance of the low
frequency limit of this system in which the resistive
conductors do not enter the analysis.

The components of an active feedback system
include: (1) a means of observing the plasma motion,
for example magnetic flux pickup loops, (2) a set of
current carrying feedback coils positioned so that they
produce a magnetic field which opposes the unstable
plasma motion, and (3) an amplifier system which
transforms the observed flux measurements into a
voltage signal at the coils. It is clear that the place-
ment of the feedback coils is important. However,
we will show in this paper that the correct placement
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of the flux loops is also critical; despite a placement
which correctly senses the vertical motion of the
plasma, the instability may fail to be stabilized by any
value of the gain. We demonstrate this effect by
analysing the results of a numerical simulation relevant
to the Princeton Beta Experiment (PBX) [9, 10].

We use Bode diagram and Nyquist techniques for the
analysis. Similar results are found in an analytic
calculation which applies the energy principle of ideal
MHD to a straight plasma with rectangular cross-section
and constant current density. The successful design of
feedback systems for future experiments must consider
the correct placement of flux pickup loops as a critical
issue.

2. NUMERICAL SIMULATION RESULTS

Figure 1 shows a schematic of a shaped plasma for
which position control is a necessary element of the
design. The plasma carries 0.75 MA current and has
a cross-section that is elongated and indented on the
inboard side. Conducting plates surrounding the
plasma lead to passive stabilization on the ideal MHD
time-scale. The L/R time for the passive conductors
is 100 ms. The poloidal field coil system used for
equilibrium, shaping and feedback control is shown,
as are two pairs of observation points. The flux
difference between the top and bottom members of
these pairs is a measure of the displacement of the
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FIG. 1. Schematic of the Modified Princeton Beta Experiment
(PBX-M). The inboard and outboard observation pairs used for
feedback control in the numerical simulations are denoted by
crosses.

plasma from its equilibrium position on a midplane.
Apart from the location of these pickup loops, the
system shown in Fig. 1 is an accurate representation of

the modified Princeton Beta Experiment (PBX-M)[11].

We have used the Princeton Tokamak Simulation
Code (TSC) [12] to analyse issues of vertical position
control for the configuration described above. The
TSC accurately models the transport time-scale
evolution of axisymmetric plasmas, including the
plasma interaction with passive and active feedback
systems. For the simulations described below, we
employ a simple feedback control law requesting an
incremental current from the vertical feedback coils
in proportion to the measured flux imbalance between
one or other of the observation pairs, i.e.

Iw(t) = B x [™(t) — P (t)] )

where i = 1 refers to the inboard observation pair and
i= 2 refers to the outboard observation pair.

In the passive sense, the inboard observation pair
and the outboard observation pair are equally good at
detecting the vertical motion of the plasma. This is
illustrated in Fig. 2, Case A, which shows the results
of a simulation where the active feedback system is
turned off by setting the gain § equal to zero. The flux
differences Ay;(t) = YIOP(t) — YPOUOM () are plotted
as a function of time for each observation pair. We
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see that the same growth rate for the instability is
calculated by the TSC using either observation pair,
and that the amplitude of the flux detected by each
pair of loops is essentially the same, corresponding to
a nearly rigid displacement. We now show that despite
the fact that both observation pairs detect the unstabi-
lized motion equally well, only the outboard pair can
be successfully incorporated into the active feedback
scheme defined by Eq. (1).

To investigate the stability of the feedback system,
we adopt some techniques of control engineering [13].
Figure 3 is a block diagram for the system; it shows the
relationship between components, and the flow of
signals from input to output. A reference current
signal is input in the vertical feedback coils, the plasma/
conductor/vacuum MHD equations are advanced by
the TSC, and the measured flux difference between a
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FIG. 2. Flux differences, AYyft) = \I/imp(t) - lb}"’mm (t), for
the inner and outer observation pairs, plotted as a function

of time.

Case A: Simulation results when the feedback gain § is zero.
The same growth rate is obtained using either observation pair.
Case B: Active feedback with the feedback coils connected to
the outside flux loops. The plasma is stable.

Case C: Active feedback with the feedback coils connected to
the inside flux loops. The plasma is unstable.

The same feedback gain values were used in Cases B and C.
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FIG. 3. Block diagram for the frequency response analysis of
the control system.

pair of observation points is output. The feedback
loop is closed by amplifying the output and returning
it to the feedback coils as a current correction to the
reference signal. For stability, all poles of the closed-
loop transfer function, T(s) = G(s)/[1 + 8G(s)], must
have negative real parts. The location of these poles
is determined by the encirclement theorem, which
leads to the Nyquist criterion for stability:

o= (A arg(1 4+ AG()HZ = N, @

The phase change of the transfer function on the
left-hand side can be interpreted as the number of
counter-clockwise encirclements of the point (-1,0)
by the SG(s) locus as s is increased from —ioe to +ico,
and Np is the number of poles of fG(s) having positive
real parts. For a vertically unstable plasma partially
stabilized by resistive walls, it is possible to show that
Np = 1.

The open-loop transfer function G(s) is not expressed
in closed form for our problem and must be evaluated
numerically. To do this, we input a test signal in the feed-
back coils in the form of a sinusoid with frequency .
The steady state response characteristics of a stable
system are such that |$G (iw)!is equal to the amplitude
ratio of the output and input sinusoids, and arg[G (iw)]
is the phase shift of the output sinusoid with respect
to the input sinusoid. The data are collected on
opposite sides of the summing point (see Fig. 3).

Figure 4 presents results obtained from running the
TSC, using first the inboard observation pair and then
the outboard observation pair for monitoring the flux.
The sign and magnitude of the gain are the same for
both cases. The results are shown as a Bode diagram,
which consists of two graphs: one is a plot of
log I8G (iw)| versus w, the other is a plot of arg[ G (iw)]
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versus w. Once the Bode diagram is constructed, the
Nyquist plots follow readily. We see that use of the
outboard observation pair gives rise to a closed curve
which meets the conditions required by the Nyquist
stability criterion. On the other hand, the Nyquist
curve obtained using the inboard observation pair
not only fails to enclose the point (—1,0) but is also
described in the wrong sense. Since changing beta
simply scales the distance of each point on a curve to
the origin but leaves the sense of traversal unchanged,
the feedback system which uses the outboard observa-
tion pair will be stable for a finite range of beta,
corresponding to the enclosure of (—1,0), whereas the
feedback system which uses the inboard observation
pair will be unstable for all values of beta.

The essential difference in behaviour of the two
feedback systems is the response to low frequencies.
At very high frequency, the signal from the feedback
coils is unable to affect the plasma motion because it
cannot penetrate the intervening passive conductors.
The feedback system is completely passive in this
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FIG. 4. Top: Frequency dependence of the amplitude and
phase of the transfer function G when observation pairs 1 and 2
are used to monitor the flux.

Bottom: Nyquist curves resulting from the mapping to the
complex G plane.
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limit. If the frequency is lowered, to become com-
parable to the inverse L/R time of the conductors, the
signal has time to influence the plasma motion. The
influence is seen in the Bode plots as a dramatic
change in slope in the curves of amplitude and phase.
When the frequency is lowered towards the zero
frequency limit, the contrast between the two observa-
tion points is most clear. In this limit, the passive
stabilizers are completely transparent to the feedback
signal and, therefore, cannot affect the feedback
response of the plasma. It is in this low frequency
limit that the placement of the flux detection loops
can determine the overall stability of the system.

To further illustrate the effect seen in the Bode
plots, we show two initial-value, time dependent
simulations with the TSC using the same initial
conditions for the plasma as in the passive calculation
(Case A of Fig. 2), but with the feedback system
activated and connected to the outside flux loops
(Case B) or the inside flux loops (Case C). For each
simulation the feedback gain had the same value as in
the frequency domain analysis of Fig. 4. The results
are shown in Fig. 2.

For Case B, where the feedback system is connected
to the outer observation pair, the plasma motion is
seen to be stabilized. The flux differences measured
by the inner and the outer observation pairs both
decrease with time, with the flux difference between
the outer loops almost an order of magnitude less than
the flux difference between the inner loops. This
indicates some plasma distortion. For Case C, where
the feedback system is connected to the inboard
observation pair, the plasma remains unstable, albeit
with a much reduced growth rate. The flux difference
between the inner observation loops is now an order
of magnitude less than the flux difference between
the outer loops, also indicating a plasma distortion, but
one whose detailed form is different compared with
Case B.

In summary, the unstable eigenfunction depends
on the position of the flux loops used to detect the
motion, even though the feedback coils, in which the
feedback currents appear, are exactly the same in the
two cases. We now investigate stability in the low
frequency limit with an analytic model.

3. ANALYTIC MODEL
A plasma column of a constant current density and

square cross-section is unstable to a non-rigid axi-
symmetric (n = 0) instability [14]. Here we modify
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FIG. 5. Contours of constant flux for the analytic model. The
equilibrium magnetic field is produced by coils which push on
the sides and pull at the corners. A pair of crosses on the
midplane denote a typical observation pair for monitoring

the position instability.

the analysis of Ref. [14] to include an active feedback
system and we show that there are forbidden regions
for the placement of the pickup loops if stability is to
be ensured. For the straight plasma, the equilibrium
poloidal flux ¥ satisfies V> = j,. We choose

i, = constant, and

Y =12+ ar?cos 46 3)

Here, « is a squareness parameter, which is assumed to
be small. If a = 0, then the plasma-vacuum interface
(¢ = 1) is a circle. Even modest values of «, such as
a = 0.2, make the § = 1 surface nearly square.
Figure 5 shows a schematic of the plasma, the poloidal
field coils and typical pairs of observation coils.

The W of the energy principle can be written as
separate contributions from the plasma and from the
vacuum:

WW = /,, (Vép) + 5s€ - Ve ldA
+ [(Ve.) + 4,978,144 “)
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where ¢ is the perturbed flux function, £ is the fluid
displacement, and the subscripts p and v refer to plasma
and vacuum, respectively. To evaluate this expression
for the given model, it is convenient to express W in
terms of the flux co-ordinates (¢,8,z). Thus, we write

2wW = [ [ dpdoT (V) ~ s § 8T

- $dBT(T4- V) )

where
8¢, 84, 0
(V) = (V1/J)2(—6iz)—)2 + 2V . Vg(_(%)(_ggg)
0dy .,

+ (VG)Z(—ab‘_’) )

and
_ 1dr?

J:(V‘p/).vngz)l:i_d_!z N

is the Jacobian. The integral denoted by ¢ is evaluated
around the ¥ = 1 contour, and j, = 4 in the units of
Eq. (3). Since «is small, Eq. (3) can be inverted to
obtain r(y,@), from which the metric elements and
the Jacobian can be evaluated.

The procedure for evaluating 6W follows the
description given in Ref. [14], but with the perturbed
vacuum flux modified by the presence of current
carrying feedback coils. Figure 6 shows a schematic
of the plasma and vacuum regions for the analytic
calculation. The perturbed vacuum flux is given the
following representation:
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In region I,
éi(r,0) = > Bl r™cosmf+ Y Lnr™ cosmb
m=1 m=1
(8)
In region 11,
¢,’,’(7‘, 6) = E B,’n'r"" cos ml (9
m=1

The two vacuum regions are separated by a circular
contour, of radius R, upon which the feedback coils
lie. The second term in Eq. (8) is the multipolar
decomposition of the flux from these coils. Each of
the terms in the sum is interpreted as the flux from an
‘equivalent feedback system’ made up of m identical
coils, equally spaced on the circular contour. The
m = 0 terms in Eqs (8) and (9) are absent since they
have zero gradient. In the plasma, the perturbed flux
is given the form

o(¥,6) = i‘ Drn (1) cosm8 (10)

m=0

Upon substituting Egs (8)~(10) into Eq. (5) for 6W,
applying the appropriate matching conditions at the
boundaries between regions 1 and II in the vacuum
and at the plasma-vacuum interface (see Appendix),
and repeated use of Euler’s equation to minimize the
plasma contributions to 6W with respect to the Fourier
coefficients, the following expressions for the energy
and eigenfunction are obtained:

26W 21
'_—7'__ = a[_2D1Lla] + 02[——4—03 + 4Dng

+4D,DF + 23" (m - 1)(DZ)? — 2D, Lo

m=1

3 5

+§DIL;’+§D,L2—2ZmD,?_L,",,] (11)

m=1
1
€0 — 20rt% = -EDI cos @

+ afrcos D + 72 cos 36( DS — ;Dl)

+7° cos 56( D + iD,) + Y r™cosméD2]

m#1,3,6

(12)

469



POMPHREY et al.
0 a 1o
£ + 20rég = +§Dl sin @
. a3 a T
+ alrsin@D* + r°sin36( D5 — ZDI)

1 o
+r%sin58(DF + ~D1)+ Y. r"sinmfDZ
4 m#1,3,5

(13)

In these equations the Fourier coefficients D, are
evaluated at the plasma edge, y = 1. The alpha
orderings are shown explicitly so that D%, represents
the first-order piece of Dy, etc.

So far, we have not specified any details of the
feedback system. By analogy with the numerical
experiment reported in the previous section, we let
each feedback system respond to the plasma motion
by generating coil currents in proportion to some
linear combination of perturbed flux. Schematically,

Ly = GmnA¢y(Dy) (14)

If the gain matrix G has the correct symmetry properties
(see Appendix), this form of feedback law can be shown
to leave the stability operator self-adjoint, so that the
energy principle will still apply. The gain elements G,
should be at least of the order of «, so that the feedback
system has no effect when « is zero. (A circular plasma
is motionally stable.) Hence, LY = G,,(A¢)).
Equation (8) for ¢, shows that AgJ is proportional

to D, with a constant of proportionality that depends
on the location of the observation points. If we

absorb the constant of proportionality into the
G-symbol for the gain, the first-order contribution to
the energy becomes

26W<

= —2G%(D,)’ (15)

Thus, to first order in «, the system stability depends
only on the sign of G¢;.

Suppose now that LY = 0. Then, W% vanishes,
and stability is determined by the second-order terms
in 8W. To simplify the analysis of 8W%%, we choose
a simplified feedback model motivated by the form of
the eigenfunction without feedback: Since the zeroth-
order displacement eigenfunction is a rigid shift, it is
appropriate to set the rigid shift component of the
first-order displacement equal to zero, i.e. D® = 0.
When 6W is minimized with respect to the D, ’s, we
obtain D¢ = —3D,, D¥ = —4D, and D% = 0 for
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m # 3, 5. The minimizing eigenfunction (first order)
is, therefore,

9 .
£ = —grle cos3 , €5 = —<r*Disin3  (16)

which is an m = 3 wrinkle superimposed on the rigid
shift [14]. The simplest non-trivial feedback model

we can choose to make 6W self-adjoint (see Appendix)
is, therefore,

LY = G1°Dy + GRDF

1

LY = 3G’%D1 amn
IE2=0 m>3

This corresponds to coils with an ability to respond
(on account of the flux measurements) to both the
rigid shift and the m = 3 perturbations.

We substitute these feedback terms into the
expression for 8W, Eq. (11). For a trial displacement,
we use the eigenfunction found for the system without
feedback, given in Eq. (16). The calculated 6W with
the feedback terms included is

28W

™

= a’Df[—-2—7 -2G5* + §G§"3 (18)
4 2
Without feedback (G$¥ = G% = 0), the plasma is seen
to be unstable. With feedback, §W can be made
positive for a range of values of the gain coefficients.
Specifically, for any choice of G%5, a G¢¥ can be
found which is stabilizing. The converse is also true.
This can be seen in Fig. 7, which gives the stability
boundary for this trial displacement in (G%%, G%)
parameter space.

Now let us consider the effect of the feedback
system on the eigenfunction. We take our expression
for 8W, Eq. (11), with the feedback terms included
and minimize with respect to the D% . This yields
D¢ =[-4+1G%]D,,D¢=-1D, and D =0 for
m#*3,5.

The minimized §W is

26W 27 5
=2 = o?D-S - 26G3% + 6% - (GR))

2
(19)

™
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FIG. 7. Stable and unstable regions for a range of values of
the gains GS{*and G$4. The long-dashed line represents the
stability boundary for the trial displacement given in Eq. (16).
The short-dashed line represents the stability boundary for

the rigid displacement. The solid curve denotes the stability
boundary for the minimized eigenfunction that is deformed by
the feedback system. The regions in the (GSY', G%) parameter
space where the plasma is stable or unstable are marked on
either side of the stability boundary by S and U, respectively.

with the corresponding (first-order) eigenfunction

a

&= Dlrz(g - —G4—13-)cos39

(20)
a

foa = —Dl‘f'z('g — gig)sin 39

The last two terms in 8W are seen to be stabilizing for
0< G <5/2, and optimally stabilizing for G%; = 5/4.
For this optimal value, the mode is stabilized if
G®® < 83/32. This is summarized in Fig. 7, which
shows the stable and unstable boundaries for this
minimized 8W in the (G$®, G$;) parameter space. It
is seen that for any choice of G, a G¢f can be found
which stabilizes the mode. However, the converse is
not true, and the choice of G&% is critical. Since the
actual values of the G-gains depend on the location of
the observation points, we see that this result translates
into a criticality for the placement of the flux pickup
loops.

It is also interesting to consider the conclusions that
result from restricting the instability to take the form
of a rigid displacement. These indicate that the above

NUCLEAR FUSION, Vol.29, No.3 (1989)
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behaviour is due to the ability of the feedback systems
to distort the eigenfunction. For a rigid displacement,
we must choose (see Eq. (12))D§ =7D,,D¢ =-1D,
and D% = 0 for m # 3, 5. Then the expression for W
becomes

26W 97 13
BW _ arp _ggaa _ Bgay 1)
b e 2 2

The stable and unstable regions for this rigid instability
are also shown in Fig. 7. Because of the linearity of
8W on the G’s, it follows that a G¥* can be found to
stabilize the mode for any value of G{3. The converse
is also true. Therefore, for a rigid instability, the
detailed placement of flux pickup loops for monitoring
the motion is not critical. Note that the stable/unstable
boundary for the rigid instability encloses the stable
region for the deformable instability, except for a
common point at G¥; = 9/2. Equation (20) shows
that for this value of the gain, G$;, the eigenfunction
no longer supports an m = 3 deformation, so that the
eigenfunctions for the rigid and deformable instability
coincide.

The stable/unstable boundary for the trial displace-
ment, given by Eq. (16), also encloses the stable region
for the deformable instability. It is clear that the
minimizing eigenfunction, Eq. (20), is affected by the
feedback and this results in a plasma that can only be
stabilized by feedback where the gain G lies within
a restricted region. Thus we see that the feedback
system with certain placements of the observation
points can allow the unstable eigenfunction to deform
so that the plasma will remain unstable.

4. CONCLUSIONS

We have demonstrated the usefulness of a new
technique for analysing the stability and control
properties of an axisymmetric tokamak using the
time dependent simulation code TSC to perform
frequency domain analysis. Using this technique, we
find that in the PBX-M tokamak, certain placements
of the magnetic pickup coils, on the inboard side, lead
to an unstable system, regardless of the gain, whereas
other placements, on the outboard side, will give a
stable system for sufficiently large values of the gain.
A simplified analytic model suggests that this
behaviour results from the non-rigid deformable
nature of the plasma cross-section and from the
plasma’s ability to modify its unstable eigenfunction
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according to the particular feedback system. No such
effect is present when the plasma is modelled as a
current filament, a finite size rigid conductor or a
‘trial function’ displacement determined in the
absence of feedback.

We can interpret this phenomenon qualitatively in
terms of a simple physical picture. As part of the
plasma instability, a perturbed magnetic field is
produced in the vacuum region and this is sensed by
the magnetic pickup coils. If the plasma is unstable
enough, it can modify its eigenfunction to deform its
cross-section so that a null in the perturbed vacuum
magnetic field will appear at the position of the
observation loops. Since these loops will then be
unable to detect the plasma instability, the feedback
system will be rendered inoperative.

We also emphasize the importance of the two
limiting cases for stability analysis of this system.
For frequencies that are large compared to the plate
resistive times, we can treat the plates as perfect
conductors, neglect the active feedback system and
perform standard ideal MHD analysis of the system.
In the opposite limit — that of very low frequencies —
the conducting plates are transparent and do not
enter the analysis. In this limit, the system must be
considered as consisting only of a deformable plasma
and active feedback.

Appendix

SELF-ADJOINTNESS OF §W
IN THE PRESENCE OF A FEEDBACK SYSTEM

Since the first two terms in the expression for §W,
Eq. (5), are manifestly self-adjoint, our discussion can
be limited to the vacuum contribution

sW, = — f 8T $o(V - Veb,)

= [I(V4.) + .9%.1dA (A1)

The first term on the right-hand side of Eq. (A.1) is
again clearly self-adjoint. In the second term, let

é, = i @7 (r) cosmb (A2)

m=0
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Also, let the feedback coils be located in the vacuum
at a radius r = R. Then

o0 1
2 — —
V¢"_ZWR

m=0

§(r — R)Jg" cosm#@ (A.3)

Using Eqs (A.3) and (A.2), the second term of Eq. (A.1)
becomes

W@ = 3 ¢T(R)VI (A4)

m=1

Consider now a feedback law which relates the coil
currents to the perturbed flux at the coils according to

I =Y gmnd3(R) (A.5)
n=1

We see that if the gain matrix g, is symmetric, i.e.

9mn = Gnm (A.6)

then W), and hence §W,), is self-adjoint.

The symmetry restriction on g, constrains the
relationship between the feedback currents L, and
the Fourier coefficients D, of the perturbed flux on
the plasma-vacuum boundary. This relationship is
obtained in two stages. In the first stage, the matching
conditions for the vacuum flux are applied at the
boundary between regions I and Il in the vacuum (see
Fig. 6). In the second stage,the matching conditions
are applied at the plasma-vacuum interface.

Stage 1
Continuity of ¢,, at r = R gives

Bl + L,.R*™ = B! (AT

while the jump condition for 9¢,,/dr at r = R (see
Eq. (A.3))is

JerR™
B! —L,R™™ =B+ — (A.8)
mmw
Thus,
Lo = ~£r-—mJ{," (A9)
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Inserting Eq. (A.9) into Eq. (8) of Section 3, using
definition (A.S5), and then solving for ¢{(r) atr = R
gives

1 —n
¢T(R) = [6mn + ——"gmn]—lBr[\R

A.10
2mm ( )
If, now, we define the matrix
Rm™ 1 1
n = = Gmn0 M8 + —— Gmn)” All
C Py [6mn + py— ] ( )

then Eq. (A.9) relates the region I vacuum coefficients
B, to the feedback currents L, according to

L, = CpnnB! (A.12)

Stage 2

Continuity of flux across the plasma-vacuum
interface implies that

Z D,, cosmf = i B,’nr""cosme
=0 m=1

+ z L..r™ cosm8 (A.13)

m=1
where

r"':l—Tacos40 at Y =1 (A.14)

Equating Fourier coefficients on each side of
Eq. (A.13), solving for B, in terms of Dy, and L,
and substituting into Eq. (A.12) gives the matrix
equation

Ly = GrinDm (A.15)

NUCLEAR FUSION, V0l.29, No.3 (1989)

FEEDBACK STABILIZATION IN A TOKAMAK

For the simplified 2 X 2 feedback system discussed
in Section 3, the restriction that g, is symmetric to
make §W self-adjoint, leads to Eq. (17).
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